Skip to contents

dkstat

This package connects to the StatBank API from Statistics Denmark.

This package is in early BETA and new changes will most likely not have backward compatibility.

A short message in Danish

Denne R Statistics pakke indeholder funktioner til at give dig adgang til data gennem API’en fra Danmarks Statistik. Funktionerne henter data fra Statistikbanken og retunerer data.frame objekter med værdierne du spørger efter i dit funktionskald.

Installation

You can install dkstat from r-universe with:

install.packages(
  "dkstat",
  repos = c(
    ropengov = "https://ropengov.r-universe.dev",
    getOption("repos")
  )
)

You can install the latest development version of dkstat from GitHub with:

# install.packages("devtools")
devtools::install_github("rOpenGov/dkstat")

Examples

The default language is danish, but have got a lang parameter that you can change from “da” to “en” if you wan’t the data returned in English.

Four basic function

There are four basic functions to learn:

  • dst_search() This function makes it possible to search through the different tables for a word or a phrase.
  • dst_tables() This function downloads all the possible tables available.
  • dst_meta() This function lets you download the meta data for a specific table, so you can see the description, unit, variables and values you can download data for.
  • dst_get_data() lets you download the actual data you wan’t.

Here are a few simple examples that will go through the basics of requesting data from the StatBank and the structure of the output.

First, we’ll load the package:

The search function

The search function let’s you.. OK, you might know this already.

Here I search for gdp in the text field of the tables.

dst_search(string = "bnp", field = "text")
##          id
## 564    NAN1
## 568    NKN1
## 573   NAHL2
## 576   NKHO2
## 579   NAHO2
## 582  NAHD21
## 651    NRHP
## 652   VNRHP
## 1300 CFABNP
##                                                                                   text
## 564  Forsyningsbalance, bruttonationalprodukt (BNP),økonomisk vækst, beskæftigelse mv.
## 568                  Forsyningsbalance, Bruttonationalprodukt (BNP), beskæftigelse mv.
## 573                          1-2.1.1 Produktion, BNP og indkomstdannelse (hovedposter)
## 576                                        1-2.1.1 Produktion, BNP og indkomstdannelse
## 579                             1-2.1.1 Produktion, BNP og indkomstdannelse (oversigt)
## 582                                                   1 Produktion og BNP (detaljeret)
## 651                                        1-2.1.1 Produktion, BNP og indkomstdannelse
## 652                           Versionstabel NRHP - Produktion, BNP og indkomstdannelse
## 1300                                                        FoU udgifter i pct. af BNP
##             unit             updated firstPeriod latestPeriod active
## 564            - 2024-10-03T08:00:00        1966         2023   TRUE
## 568            - 2024-11-20T08:00:00      1990K1       2024K3   TRUE
## 573     Mio. kr. 2024-06-28T08:00:00        1966         2023   TRUE
## 576     Mio. kr. 2024-11-20T08:00:00      1990K1       2024K3   TRUE
## 579     Mio. kr. 2024-06-28T08:00:00        1995         2023   TRUE
## 582     Mio. kr. 2024-06-28T08:00:00        1995         2023   TRUE
## 651            - 2024-10-28T08:00:00        1993         2023   TRUE
## 652            - 2024-10-28T08:00:00        1993         2023   TRUE
## 1300 Pct. af bnp 2023-12-14T08:00:00        1997         2022   TRUE
##                                          variables
## 564                    transaktion, prisenhed, tid
## 568  transaktion, prisenhed, sæsonkorrigering, tid
## 573                    transaktion, prisenhed, tid
## 576  transaktion, prisenhed, sæsonkorrigering, tid
## 579                    transaktion, prisenhed, tid
## 582                    transaktion, prisenhed, tid
## 651            område, transaktion, prisenhed, tid
## 652   version, område, transaktion, prisenhed, tid
## 1300                               pct af BNP, tid

Download the tables

The dst_get_tables function downloads all the available tables that the search function use when searching for a word or a phrase.

head(dst_get_tables(lang = "da"))
##         id                            text  unit             updated
## 1   FOLK1A Befolkningen den 1. i kvartalet Antal 2024-11-11T08:00:00
## 2  FOLK1AM   Befolkningen den 1. i måneden Antal 2024-12-10T08:00:00
## 3  BEFOLK1          Befolkningen 1. januar Antal 2024-02-12T08:00:00
## 4  BEFOLK2          Befolkningen 1. januar Antal 2024-02-12T08:00:00
## 5    FOLK3          Befolkningen 1. januar Antal 2024-02-12T08:00:00
## 6 FOLK3FOD          Befolkningen 1. januar Antal 2024-02-12T08:00:00
##   firstPeriod latestPeriod active                             variables
## 1      2008K1       2024K4   TRUE       område,køn,alder,civilstand,tid
## 2     2021M10      2024M11   TRUE                  område,køn,alder,tid
## 3        1971         2024   TRUE              køn,alder,civilstand,tid
## 4        1901         2024   TRUE                         køn,alder,tid
## 5        2008         2024   TRUE fødselsdag,fødselsmåned,fødselsår,tid
## 6        2008         2024   TRUE  fødselsdag,fødselsmåned,fødeland,tid

Meta data

The dst_meta function retrieves meta data from the table you wan’t to take a closer look at. It can be used to create the final request, but if you can figure out the structure of the query you can define it yourself.

We’ll get some meta data from the AULAAR table. The AULAAR table has net unemployment numbers.

aulaar_meta <- dst_meta(table = "AULAAR", lang = "da")

The ‘dst_meta’ function returns a list with 4 objects: - basics - variables - values - basic_query

Basics

Let’s see what the basics contains:

aulaar_meta$basics
## $id
## [1] "AULAAR"
## 
## $text
## [1] "Fuldtidsledige (netto)"
## 
## $description
## [1] "Fuldtidsledige (netto) efter køn, personer/pct. og tid"
## 
## $unit
## [1] "Antal"
## 
## $updated
## [1] "2024-04-16T08:00:00"
## 
## $footnote
## NULL

There’s a table id, a short description, a unit description and when the table was updated.

Variables

The variables in the list has a short description of each variable as well as the id. You might want to make sure that you have supplied all the ID’s where the elimination columns is equal to FALSE. The IDs where eliminnation is equal FALSE are mandatory.

aulaar_meta$variables
##       id          text elimination
## 1    KØN           køn        TRUE
## 2 PERPCT personer/pct.       FALSE
## 3    Tid           tid       FALSE

Values

The values is a list object of all the values in each variable. You use the text column to construct your final query:

str(aulaar_meta$values)
## List of 3
##  $ KØN   :'data.frame':  3 obs. of  2 variables:
##   ..$ id  : chr [1:3] "TOT" "M" "K"
##   ..$ text: chr [1:3] "I alt" "Mænd" "Kvinder"
##  $ PERPCT:'data.frame':  2 obs. of  2 variables:
##   ..$ id  : chr [1:2] "L10" "L9"
##   ..$ text: chr [1:2] "Procent af arbejdsstyrken" "Ledige (1000 personer)"
##  $ Tid   :'data.frame':  45 obs. of  2 variables:
##   ..$ id  : chr [1:45] "1979" "1980" "1981" "1982" ...
##   ..$ text: chr [1:45] "1979" "1980" "1981" "1982" ...

Get data

You need to build your query based on the text column that each variable contains in the meta_data$values list.

aulaar <- dst_get_data(
  table = "AULAAR", KØN = "Total", PERPCT = "Per cent of the labour force", Tid = 2013,
  lang = "en"
)
str(aulaar)
## 'data.frame':    1 obs. of  4 variables:
##  $ KØN   : chr "TOT Total"
##  $ PERPCT: chr "L10 Per cent of the labour force"
##  $ TID   : POSIXct, format: "2013-01-01"
##  $ value : num 4.4

In the request above I don’t supply the meta_data to the dst_get_data function, but this is possible as I will show below. It’s a good idea to supply the meta data to the dst_get_data function if you query the table more than once. If you don’t supply the meta data the dst_get_data function will request the meta data for the table and this will be very ineffecient.

Let’s query the statbank using more than one value for each variable.

folk1a_meta <- dst_meta("folk1a", lang = "da")

str(dst_get_data(
  table = "folk1a",
  Tid = "*",
  CIVILSTAND = "*",
  ALDER = "*",
  OMRÅDE = c("Hele landet", "København", "Dragør", "Albertslund"),
  lang = "da",
  meta_data = folk1a_meta
))
## 'data.frame':    172720 obs. of  5 variables:
##  $ TID       : POSIXct, format: "2008-01-01" "2008-01-01" ...
##  $ CIVILSTAND: chr  "TOT I alt" "TOT I alt" "TOT I alt" "TOT I alt" ...
##  $ ALDER     : chr  "IALT Alder i alt" "IALT Alder i alt" "IALT Alder i alt" "IALT Alder i alt" ...
##  $ OMRÅDE    : chr  "000 Hele landet" "101 København" "155 Dragør" "165 Albertslund" ...
##  $ value     : int  5475791 509861 13261 27602 64412 7986 121 295 65722 7097 ...

I can also build a query beforehand and then use the query in the query parameter. This might be a good way to split your script up into smaller pieces and make it more structured.

You might have noticed that I use the * as a value in the TID variable. You can use the star as a alternative to writing all the text values for the variable.

my_query <- list(
  OMRÅDE = c("Hele landet", "København", "Frederiksberg", "Odense"),
  CIVILSTAND = "Ugift",
  TID = "*"
)

str(dst_get_data(table = "folk1a", query = my_query, lang = "da"))
## 'data.frame':    272 obs. of  4 variables:
##  $ OMRÅDE    : chr  "000 Hele landet" "000 Hele landet" "000 Hele landet" "000 Hele landet" ...
##  $ CIVILSTAND: chr  "U Ugift" "U Ugift" "U Ugift" "U Ugift" ...
##  $ TID       : POSIXct, format: "2008-01-01" "2008-04-01" ...
##  $ value     : int  2552700 2563134 2564705 2568255 2575185 2584993 2584560 2588198 2593172 2604129 ...
str(dst_get_data(table = "AUP01", OMRÅDE = c("Hele landet"), TID = "*", lang = "da"))
## 'data.frame':    88 obs. of  3 variables:
##  $ OMRÅDE: chr  "000 Hele landet" "000 Hele landet" "000 Hele landet" "000 Hele landet" ...
##  $ TID   : POSIXct, format: "2017-07-01" "2017-08-01" ...
##  $ value : num  4 4.1 3.9 4 4 4.1 4.2 4.2 4.1 3.7 ...

If you run into problems, then try to set the parse_dst_tid parameter to FALSE as there are few datasets with non-standard date formats.

Don’t hesitate to submit an issue or question on github and I’ll try to help as much as I can.