Remove the data column and return only the metadata information of
input-output (or related tables) from a source.
If dat
is not inputed as a nested data frame created by
iotables_download
, validate the source
input
parameter and try to load the table from the current sessions'
temporary directory.
naio_10_cp1700
Symmetric input-output table at basic prices (product by product)naio_10_pyp1700
Symmetric input-output table at basic prices (product by product) (previous years prices)naio_10_cp1750
Symmetric input-output table at basic prices (industry by industry)naio_10_pyp1750
Symmetric input-output table at basic prices (industry by industry) (previous years prices)naio_10_cp15
Supply table at basic prices incl. transformation into purchasers' pricesnaio_10_cp16
Use table at purchasers' pricesnaio_10_cp1610
Use table at basic pricesnaio_10_pyp1610
Use table at basic prices (previous years prices) (naio_10_pyp1610)naio_10_cp1620
Table of trade and transport margins at basic pricesnaio_10_pyp1620
Table of trade and transport margins at previous years' pricesnaio_10_cp1630
Table of taxes less subsidies on products at basic pricesnaio_10_pyp1630
Table of taxes less subsidies on products at previous years' pricesuk_2010_siot
United Kingdom Input-Output Analytical Tables data
Arguments
- dat
A nested data file created by
iotables_download
. Defaults toNULL
in which case an attempt is made to find and read in the nested data from the current R sessions' temporary directory.- source
See the available list of sources above in the Description.
Value
A data frame, which contains the metadata of all available
input-output tables from a specific source
.
See also
Other import functions:
airpol_get()
,
employment_get()
,
iotables_download()
,
iotables_read_tempdir()
Examples
# \donttest{
# The table must be present in the sessions' temporary directory:
iotables_download(source = "naio_10_pyp1750")
#> The naio_10_pyp1750_processed.rds is retrieved from the temporary directory.
#> Returning the processed SIOTs from tempdir. You can override this with force_download=TRUE.
#> # A tibble: 96 x 10
#> unit stk_flow geo time unit_lab stk_flow_lab geo_lab time_lab
#> <chr> <chr> <chr> <date> <chr> <chr> <chr> <date>
#> 1 MIO_EUR DOM DK 2018-01-01 Million eu~ Domestic Denmark 2018-01-01
#> 2 MIO_EUR IMP DK 2018-01-01 Million eu~ Imports Denmark 2018-01-01
#> 3 MIO_EUR TOTAL DK 2018-01-01 Million eu~ Total Denmark 2018-01-01
#> 4 MIO_NAC DOM DK 2018-01-01 Million un~ Domestic Denmark 2018-01-01
#> 5 MIO_NAC IMP DK 2018-01-01 Million un~ Imports Denmark 2018-01-01
#> 6 MIO_NAC TOTAL DK 2018-01-01 Million un~ Total Denmark 2018-01-01
#> 7 MIO_EUR DOM DK 2017-01-01 Million eu~ Domestic Denmark 2017-01-01
#> 8 MIO_EUR IMP DK 2017-01-01 Million eu~ Imports Denmark 2017-01-01
#> 9 MIO_EUR TOTAL DK 2017-01-01 Million eu~ Total Denmark 2017-01-01
#> 10 MIO_NAC DOM DK 2017-01-01 Million un~ Domestic Denmark 2017-01-01
#> # ... with 86 more rows, and 2 more variables: year <dbl>, data <list>
# Now you can get the metadata:
iotables_metadata_get(source = "naio_10_pyp1750")
#> # A tibble: 96 x 9
#> unit stk_flow geo time unit_lab stk_flow_lab geo_lab time_lab
#> <chr> <chr> <chr> <date> <chr> <chr> <chr> <date>
#> 1 MIO_EUR DOM DK 2018-01-01 Million eu~ Domestic Denmark 2018-01-01
#> 2 MIO_EUR IMP DK 2018-01-01 Million eu~ Imports Denmark 2018-01-01
#> 3 MIO_EUR TOTAL DK 2018-01-01 Million eu~ Total Denmark 2018-01-01
#> 4 MIO_NAC DOM DK 2018-01-01 Million un~ Domestic Denmark 2018-01-01
#> 5 MIO_NAC IMP DK 2018-01-01 Million un~ Imports Denmark 2018-01-01
#> 6 MIO_NAC TOTAL DK 2018-01-01 Million un~ Total Denmark 2018-01-01
#> 7 MIO_EUR DOM DK 2017-01-01 Million eu~ Domestic Denmark 2017-01-01
#> 8 MIO_EUR IMP DK 2017-01-01 Million eu~ Imports Denmark 2017-01-01
#> 9 MIO_EUR TOTAL DK 2017-01-01 Million eu~ Total Denmark 2017-01-01
#> 10 MIO_NAC DOM DK 2017-01-01 Million un~ Domestic Denmark 2017-01-01
#> # ... with 86 more rows, and 1 more variable: year <dbl>
# }