Download zipped data from GISCO to the cache_dir
and extract the relevant ones.
Arguments
- id
character string or number. Type of dataset to be downloaded, see Details. Values supported are:
"countries""coastal_lines""communes""lau""nuts""urban_audit""postal_codes"
This argument replaces the previous (deprecated) argument
id_giscoR.- year
character string or number. Release year of the file, see Details.
- cache_dir
character string. A path to a cache directory. See Caching strategies section in
gisco_set_cache_dir().- update_cache
logical. Should the cached file be refreshed?. Default is
FALSE. When set toTRUEit would force a new download.- verbose
logical. If
TRUEdisplays informational messages.- resolution
character string or number. Resolution of the geospatial data. One of:
"60": 1:60 million."20": 1:20 million."10": 1:10 million."03": 1:3 million."01": 1:1 million.
- ext
Extension of the file(s) to be downloaded. Formats available are
"shp","geojson","svg","json","gdb". See Details.- recursive
recursiveis no longer supported; this function will never perform recursive extraction of child.zipfiles. This is the case of "shp.zipinside the top-level.zip, that won't be unzipped.- ...
Ignored. The argument
id_giscoR() would be captured via
...and re-directed toidwith a warning.
Details
Some arguments only apply to a specific value of "id". For example
"resolution" would be ignored for values "communes", "lau",
"urban_audit" and "postal_codes".
See years available in the corresponding functions:
The usual extensions used across giscoR are "gpkg" and "shp",
however other formats are already available on GISCO. Note that after
performing a bulk download you may need to adjust the default "ext" value
in the corresponding function to connect it with the downloaded files (see
Examples).
See also
Additional utils for downloading datasets:
gisco_get_unit
Examples
tmp <- file.path(tempdir(), "testexample")
# \donttest{
dest_files <- gisco_bulk_download(
id = "countries", resolution = 60,
year = 2024, ext = "geojson",
cache_dir = tmp
)
# Read one
library(sf)
#> Linking to GEOS 3.13.1, GDAL 3.11.0, PROJ 9.6.0; sf_use_s2() is TRUE
read_sf(dest_files[1]) |> head()
#> Simple feature collection with 6 features and 11 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 2110342 ymin: -3415366 xmax: 13761830 ymax: 2744026
#> Projected CRS: ETRS89-extended / LAEA Europe
#> # A tibble: 6 × 12
#> CNTR_ID CNTR_NAME NAME_ENGL NAME_FREN ISO3_CODE SVRG_UN CAPT EU_STAT
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 CC Cocos Keeling Isl… Cocos (K… Îles des… CCK AU Ter… West… F
#> 2 CD République Démocr… Democrat… Républiq… COD UN Mem… Kins… F
#> 3 CF République Centra… Central … Républiq… CAF UN Mem… Bang… F
#> 4 CG Congo-Kongo-Kongó Congo Congo COG UN Mem… Braz… F
#> 5 CH Schweiz-Suisse-Sv… Switzerl… Suisse CHE UN Mem… Bern F
#> 6 CI Côte D’Ivoire Côte D’I… Côte d’I… CIV UN Mem… Yamo… F
#> # ℹ 4 more variables: EFTA_STAT <chr>, CC_STAT <chr>, NAME_GERM <chr>,
#> # geometry <MULTIPOLYGON [m]>
# Now we can connect the function with the downloaded data like:
connect <- gisco_get_countries(
resolution = 60,
year = 2024, ext = "geojson",
cache_dir = tmp, verbose = TRUE
)
#> ℹ Cache dir is C:\Users\RUNNER~1\AppData\Local\Temp\RtmpGEWXl5/testexample/countries.
#> ✔ File already cached: C:\Users\RUNNER~1\AppData\Local\Temp\RtmpGEWXl5/testexample/countries/CNTR_RG_60M_2024_4326.geojson.
# Message shows that file is already cached ;)
# }
# Clean
unlink(tmp, force = TRUE)
