Download individual shapefiles of units. Unlike gisco_get_countries()
,
gisco_get_nuts()
or gisco_get_urban_audit()
, that downloads a full
dataset and applies filters, gisco_get_units()
downloads a single
shapefile for each unit.
Arguments
- id_giscoR
Select the
unit
type to be downloaded. Accepted values are"nuts"
,"countries"
or"urban_audit"
.- unit
Unit ID to be downloaded. See Details.
- mode
Controls the output of the function. Possible values are
"sf"
or"df"
. See Value and Details.- year
Release year of the file. One of
"2001"
,"2006"
,"2010"
,"2013"
,"2016"
,"2020"
or"2024"
.- epsg
projection of the map: 4-digit EPSG code. One of:
"4258"
: ETRS89"4326"
: WGS84"3035"
: ETRS89 / ETRS-LAEA"3857"
: Pseudo-Mercator
- cache
A logical whether to do caching. Default is
TRUE
. See About caching.- update_cache
A logical whether to update cache. Default is
FALSE
. When set toTRUE
it would force a fresh download of the source.geojson
file.- cache_dir
A path to a cache directory. See About caching.
- verbose
Logical, displays information. Useful for debugging, default is
FALSE
.- resolution
Resolution of the geospatial data. One of
"60"
: 1:60million"20"
: 1:20million"10"
: 1:10million"03"
: 1:3million"01"
: 1:1million
- spatialtype
Type of geometry to be returned:
"RG"
, forPOLYGON
and"LB"
forPOINT
.
Value
A sf
object on mode = "sf"
or a data frame on mode = "df"
.
Details
The function can return a data frame on mode = "df"
or a sf
object on mode = "sf"
.
In order to see the available unit
ids with the required
combination of spatialtype, year
, first run the function on "df"
mode. Once that you get the data frame you can select the required ids
on the unit
parameter.
On mode = "df"
the only relevant parameters are spatialtype, year
.
Note
Country-level files would be renamed on your cache_dir
to avoid naming conflicts with NUTS-0 datasets.
Please check the download and usage provisions on gisco_attributions()
.
About caching
You can set your cache_dir
with gisco_set_cache_dir()
.
Sometimes cached files may be corrupt. On that case, try re-downloading
the data setting update_cache = TRUE
.
If you experience any problem on download, try to download the
corresponding .geojson
file by any other method and save it on your
cache_dir
. Use the option verbose = TRUE
for debugging the API query.
For a complete list of files available check gisco_db.
See also
Other political:
gisco_bulk_download()
,
gisco_get_coastallines()
,
gisco_get_countries()
,
gisco_get_lau()
,
gisco_get_nuts()
,
gisco_get_postalcodes()
,
gisco_get_urban_audit()
Author
dieghernan, https://github.com/dieghernan/
Examples
# \donttest{
cities <- gisco_get_units(
id_giscoR = "urban_audit",
mode = "df",
year = "2020"
)
VAL <- cities[grep("Valencia", cities$URAU_NAME), ]
# Order from big to small
VAL <- VAL[order(as.double(VAL$AREA_SQM), decreasing = TRUE), ]
VAL.sf <- gisco_get_units(
id_giscoR = "urban_audit",
year = "2020",
unit = VAL$URAU_CODE
)
# Provincia
Provincia <-
gisco_get_units(
id_giscoR = "nuts",
unit = c("ES523"),
resolution = "01"
)
# Reorder
VAL.sf$URAU_CATG <- factor(VAL.sf$URAU_CATG, levels = c("F", "K", "C"))
# Plot
library(ggplot2)
ggplot(Provincia) +
geom_sf(fill = "gray1") +
geom_sf(data = VAL.sf, aes(fill = URAU_CATG)) +
scale_fill_viridis_d() +
labs(
title = "Valencia",
subtitle = "Urban Audit",
fill = "Urban Audit\ncategory"
)
# }